Showing posts with label momentum. Show all posts
Showing posts with label momentum. Show all posts

2012-11-28

LHC energy and momentum

Problem: The LHC delivers 8 TeV per particle in bunches of 1011 particles. What is the kinetic energy and momentum of a bunch, in SI units and then as compared to (a) a small-caliber bullet and (b) a Major-League baseball pitch?

I get that the bunch has far more kinetic energy than either a bullet or a baseball pitch, but far less momentum. A LHC particle bunch would burn you badly, but it wouldn't knock you down! Of course there are some 109 bunches per second, so you don't want to be hanging out in the beam line when it's running.

2007-11-19

space shuttle

In class today I did the rocket, the calculation of the trajectory of a device that is propelled by a continuous stream of momentum-carrying propellant. It accelerates as it sheds mass, and the final velocity is related to the initial velocity by a logarithm of the mass ratio (initial to final). I then worked out how big the Space Shuttle's fuel tanks need to be—relative to the orbiter—to get the orbiter to orbit, assuming that the propellant is expelled at around the speed of sound. Insane! It turns out that the space shuttle boosters expel propellant at around 4000 m/s, far, far higher than the speed of sound. If I know anything about hydrodynamics, this is non-trivial. Kudos to those NASA engineers.

2007-11-12

accelerating a train

There is a nice old problem of the force exerted by an engine pulling a set of train cars, all of which are initially at rest on a frictionless track, and all of which end up moving at speed v. You can think about it in terms of momentum (the change in momentum is due to a force acting over a time) or in terms of kinetic energy (the kinetic energy is produced by a force acting over a distance). The two ways of thinking about it get different answers by a factor of two!

The resolution is simple: The momentum of the train must be created by a force, and since it is a vector law in a one-dimensional problem, the total force times the total time must equal the total momentum. Any other solution fails to conserve momentum. The work done by the engine can go into kinetic energy, but it can also go into other forms of energy (like oscillation or dissipation in the train linkages). Energy is conserved as long as the kinetic energy is less than the work done. This resolves the discrepancy, and creates the nice result that when a train is accelerated, there must be dissipation, or else the train will be left vibrating or oscillating as it goes. I think this is an example of impedance matching.